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Abstract

Multi-view machine learning has garnered substantial attention in various applica-

tions over recent years. Many such applications involve learning on data obtained

from multiple heterogeneous sources of information, for example, in multi-sensor sys-

tems such as self-driving cars, or monitoring intensive care patient vital signs at their

bed-side. Learning models for such applications can often benefit from leveraging not

only the information from individual sources, but also the interactions and relation-

ships between these sources.

In our research, we look at multi-view learning approaches which try to model

these inter-view interactions explicitly. Here, we define interactions and relationships

between views in terms of the information which is shared across them, including

corroboration and redundancy of information. We distinguish between global rela-

tionships, which are shared across all views, and local relationships, which are only

shared between a subset. For example, in a multi-camera system, we can think of

global relationships to be defined over the part of a scene which is visible to all cam-

eras, while local relationships would be defined by the intersection of the fields of

view of only some of the cameras.

We consider three main aspects of modeling such relationships. First, we develop

and study a framework for discovering and understanding them within multi-view

data. We describe different approaches to uncover and model these global and local

relationships. We look at simple multi-view extensions of auto-encoders, and then

move onto more sophisticated generative models.

Second, we explore the benefits of this understanding of inter-view relationships

to solve down-stream modeling tasks, exploiting the structure that multi-view data

avails us. Here, we adapt our models to tackle different applications, and demon-

strate the utility and effectiveness of explicitly modeling these relationships. We first

look at incorporating the downstream loss function into the representation learning

framework to cater to the task-specific problem. We then consider the applications

in the domains of image data and temporal data to evaluate the adaptability of our

methods.

Third, we investigate a methodology for improving these relationships directly

by facilitating favorable interactions between views. We first look at how one can

re-interpret individual views as data points, allowing us to apply traditional machine

learning approaches to modeling inter-view relationships. Using this re-interpretation,

we look at view-selection where we directly select views which manifest favorable

relationships, and propose Scalable Active Search as a candidate for this. Active

Search allows us to interactively search for informative views, given an initial set of

views and a measure of similarity between them.
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Chapter 1

Introduction

Data. Bio data. Image data. User data. Meta data. Big data. Today, we have

access to an incredible amount of data to analyze, synthesize and utilize. But this

data often does not present itself to straightforward processing; a lot of it is noisy,

unstructured, or even missing. And, data can come from multiple, often heteroge-

neous sources. For example, multi-sensor systems such as bedside patient monitors

used in intensive care and self-driving cars produce and depend on data from widely

diverse modalities, such as image data and wave-form data. Multi-view machine

learning, or multi-modal machine learning, involves machine learning on such data

which comes from multiple different, but related, sources. Each of these sources gives

us some, but not all, information contained in the system we are observing; e.g.,

ECGs and EEGs observe different aspects of the functioning of the human body,

but ailments can potentially manifest in both of them as correlated deviations from

“healthy” measurements.

Often, the type of data from these sources differs. For instance, in self-driving

cars (e.g., Figure 1.1), LIDAR and other depth sensors can provide a more reliable

3D map of the surroundings than cameras, while the latter is necessary for interpreting

road signs and traffic signals. Further, the information they can both provide, like

the location of nearby pedestrians, is important as well. The corroboration of these

sensors in such cases is imperative for callibration, de-noising and more. Similarly,

in bed-side patient monitoring systems (e.g., Figure 1.2), physiological readings can

come in a variety of sources – the patient’s heart, brain, or respiration functions,

blood flow in vessels, etc., and modalities – waveform time series, images, videos, all

providing valuable information. The financial domain also has pertinent applications

for multi-view learning, including credit monitoring and fraud detection. Any given

person is likely to have access to multiple different financial accounts and credit

sources, such as bank accounts, credit cards, home loans, retirement funds, etc.,

1



2 CHAPTER 1. INTRODUCTION

simultaneously reflecting their financial position and credit worthiness, as well as

their banking habits and shopping patterns. We would be remiss to not also mention

robots, such as CHIMP in Figure 1.3, equipped with their various sensors to help aid

manipulation, movement, mapping, etc.

Figure 1.1: Multi-sensor system: Self-driving cars.

It is unsurprising, then, that the applications of multi-view machine learning are

numerous. Making sense of different sources of information as well as the way they

interact with each other is of vital importance.

In this thesis, we explore the topic of multi-view machine learning from three

directions. We begin by studying and understanding inter-view relationships (IVRs),

laying the groundwork for building our learning models. Here, we look at identifying

redundancy, i.e. overlap and agreement, of information across views as a basis for

these relationships. In a simple sense, the manner in which different views agree, or

disagree, with each other tells us about how they may be related.

We then look at how to exploit this understanding to tackle real-world application

domains. Here, we study how these relationships can be used to build domain specific

models, as well as how the domain itself can inform how we model these relationsips.

We consider a variety of applications for our models, including healthcare data, images

and text.

Finally, we investigate ways in which to improve these relationships, where we

directly manipulate them to bolster favorable interactions. This could be done in

multiple ways, including system design (e.g., building our own robot) or context-
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Figure 1.2: Multi-sensor system: Bed-side monitoring of patient vital signs.

centric data processing (e.g., corroboration between cameras can be established more

reliably during the day, while LIDAR may see more relevance at night). In our work,

we consider the idea of “view-selection,” where we directly select views which manifest

favorable relationships.

Central to our exploration is the concept of Representation Learning. This

refers to the learning of a transformation of data into an intermediate feature space

which can better exploited for a given task. Raw pixel data is rarely directly consumed

by computer-vision models; but is instead featurized using a plethora of well-studied

techniques to extract useful patterns which are easier for models to interpret. Simi-

larly, we will consider Representation Learning as the means to interpret and digest

multi-view data so that it may be conducive to further modeling.

In the next sections, we establish some relevant terminology and notation, and

give an outline of the different directions we will pursue in this thesis.
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Figure 1.3: Multi-sensor system: CHIMP - one of CMU’s many in-house robots.

1.1 Terminology and Notation

Throughout this thesis, we will frequently use words such as modalities, sources and

views. While they are often used interchangeably, here are some useful distinctions

to help establish context where it matters.

A modality refers to the type of data available. For example, image, text, audio,

and various types of waveform data are all different modalities which may be available

to us. A source refers to the device or entity producing the data, such as a camera

for image data or an ECG for heart activity waveform data. And possibly the most

abstract, a view refers to information which can be interpreted, and often gathered,

independently. The stream of images we get from a video recorded from a camera

can be considered a view, for instance.

To help disambiguate, here are some simple examples of how these terms relate.

In a multi-camera system, we have a single modality being produced by multiple

cameras, which are the sources. And each of these sources produces its own view,
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Figure 1.4: What exactly are views? Cameras and ECGs are sources which provide

us with information in the modalities of image and waveform data respectively.

These streams of images and waveform readings which we interpret are what we

consider as views. A system is the entity which produces all the data in all the

views. It encompasses all its constituent modalities, sources and views. For e.g., a

social media network could be considered as a system, with individual users in it as

sources producing posts as views.

i.e. the corresponding stream of images. If we have a single camera, we can even

consider different featurizations of the same data-stream. In this case, we have a single

modality and source but multiple views corresponding to different featurizations

of raw images or videos. Figure 1.4 walks through these concepts as well.

It is important to note that our models consume individual views. In technical

terms, these are the different sets of features which will be fed into our models. We

may use the terms interchangeably when we deal in abstracts, but these distinctions

will help keep the context clear when it matters.

We also often use the term system to refer to the data-generating process. This

may be the sensorized human body for physiological data, the environment surround-

ing the self-driving car or robot, or the individual whose credit is being evaluated.

Further, this system produces “underlying” data-points, which represent the infor-

mation (features) we receive as views. For example, a data-point could be a time-

window during which a human body is observed. Featurized representations of vital

signs waveforms measured in such a time-window could be taken as views. We use

the term “underlying” to refer to the ground-truth data, and each view provides lim-
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ited information about this data. This underlying data-point is never assumed to be

fully characterized, even with all the views. It is just the entity which establishes a

correspondence within the available views.

And finally, we will often use the term relationship (and less often, interaction),

to refer to useful connections we can establish between two or more views from the

information provided by them. One of the main focuses of our work will be to explore

this idea in more detail. So while the concept may remain nebulous now, it will

become more concrete as we move forward. In the simplest form, though, it can be

considered as a function over the information shared between a subset of views. We

will use the terms “multi-view” relationship, “inter-view” relationship or simply

relationship interchangeably throughout this document.

1.1.1 Notation

Here is the notation we will be adopting throughout this document. Each view of the

multi-view data will be represented as Xi where i is the index of the view, and K

is the number of views. The data-points (samples) within each view will be indexed

by a superscript: the j
th

sample of view i is given by x
j
i . In general, we assume

correspondences for a given sample index across different views. For example, x
j
1

and x
j
2 both correspond to the same underlying data-point observed via two different

views. We take the total number of underlying data-points to be N .

In the case of missing views, we take Kα to be the set of view indices which are

available; this depends on the context but is usually associated with a single sample.

If the j
th

sample of view i is missing, we do not have a value for x
j
i , and i ∉ Kj

α. In the

case of an explicit latent representations, we take Li to be the latent representation

of view i and Lall as the shared latent representation across all views.

If there are special cases where we depart from this notation, we will describe any

changes where they occur.

1.2 Modeling Inter-view Relationships

In this section, we will lay the foundation for much of the work we discuss in the rest

of this thesis. We start by introducing the hypothesis that is central to the theme of

our research:

Multi-view data does not just provide us with multiple sets of features

through different views, it also provides structural information through

the interactions between them.
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In other words, multi-view data can be considered a gestalt, where the information

provided is more than just the set of all features. To make this clearer, let us revisit

the example of self-driving cars. Depth sensors and cameras both provide us with

useful information about the surrounding environment. But the agreement between

them on the information they both provide can be vital. For instance, the information

they each provide on the locations of nearby pedestrians can allow estimates of higher

confidence than any single sensor. Here are a few, more general, utilities of looking

at these interactions:

� Leveraging redundancies to bolster models built over the data, e.g., denoising.

� Reconstructing missing or corrupted views, e.g., data imputation.

� Quantifying usefulness of a given view through its relationships.

But what about simply concatenating or stacking together all the individual

views into one, big single-view dataset? This definitely provides us with all the

information available to us, and agreements and overlap between views just translates

to that over feature-subsets. So, what do we lose if we do this? In theory, with enough

complexity, a single-concatenated-view model should be able to implicitly recover and

exploit any useful structure in the data. In practice, this isn’t as straightforward [Liu

et al., 2016].

We maintain that explicitly considering the distinctions between the views and

modeling their interactions is beneficial in building efficient multi-view models. Guid-

ing our models on where to look and what to look for allows us to make more effective

use of the structure inherent to the data. To this end, our first step is to try to

unravel what these relationships are, and how we can interpret and model them.

1.2.1 What is an Inter-view Relationship?

This is one of the primary questions we will be trying to answer with our work. To

begin with, we distinguish between what we call global and local relationships.

● Global relationships are those which are shared across all views.

● Local relationships would be those which manifest only within a subset of views.

A simple example to distinguish between the two is that of a multi-camera system.

A global relationship would be defined over the region of the observed space which

is visible to all the cameras, while a local one would be formed over any region which

is visible to some subset of cameras. While this particular example lends itself to

geometric and computer vision based characterizations, e.g., calibration, the more

general problem might require more abstract characterizations. We need to keep
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the following in mind while building our models: By definition, global relationships

consider the most constrained region of the data-space: the intersection of information

available from all the views. In contrast, local relationships can be defined anywhere

in the union of this information. Going back to what we said earlier, this distinction

helps define where to look for IVRs.

Existing modeling approachs largely tend to favor global relationships. The clas-

sic example is the formulation of Canonical Correlation Analysis (CCA) problem

and multi-view extensions such as [Rupnik and Shawe-Taylor, 2010]; here, a single

mapping is learned for all views into common embedding space which maximizes a

measure of a joint correlation between views.

We are interested in the general setting: learning local and global relationships

over general, source-agnostic, data. The nature and structure of these relationships

are not always known within the data a priori. Further, the distinction between these

two is not always obvious either. Unless there is very clear structural information we

can exploit, this ambiguity will always be present. In short, this ambiguity in what

to look for is the price we pay for generality.

So how do we go about dealing with this ambiguity? It is important to note that

the practical utility of these relationships, and even how we might define them in

a particular context, is largely dependent on the specific learning problems we are

interested in. Information which is useful for one problem might not be relevant

for another problem, even within the same data. For example, we could reasonably

assume that multi-view image classification and missing-view image imputation would

not derive the same utility from any specific model of these relationships. Ideally, the

models we build will be able to gracefully incorporate domain-specific information

into the learning process.

For this, we consider two avenues to pursue our modeling, namely, task-agnostic

and task-adaptive. For both these cases, we will primarily model these relationships

through Multi-view Representation Learning (MVRL). Again, representation

learning is generally performed as an intermediate or meta step to extract information

from data and convert it into a meaningful form which is more conducive to learning

and modeling for downstream tasks. To elaborate on the distinction between task-

agnostic and task-adaptive, the former uses MVRL truly as a meta-problem where

we assume we do not know what task our learned representations will be used for.

The latter considers the scenario where the MVRL is tied to a specific application or

problem which we can use as scaffolding for our learning. In simple terms, these can

be considered as unsupervised and supervised modeling approaches respectively.

In the case of task-agnostic modeling, we will introduce a simple proxy task which

we can optimize towards. This typically is either reconstruction of missing views, or

likelihood maximization. These two tasks can always be considered, even in the case
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of unsupervised data. For task-adaptive problems, we assume we have access to the

down-stream loss function we care about; we can rope in this loss into our MVRL

approaches to guide the learning process towards down-stream utility.

We also introduce the idea of robustness as a desirable quality of our models.

For the learning problems we consider, we take robustness to mean resilience to

missing information; i.e., we would like our model to produce reasonable outputs,

even when some of the views go missing in our input data. In our task-agnostic

setting, this would mean that we would like to produce reasonable imputations (or

realistic samples) of missing data from the available information. Further, we want

this robustness to persist regardless of which views go missing. In other words, we

would like our models to be resilient under arbitrary subsets of missing views in our

input data.

In the next section, we give a brief outline of the rest of the thesis.

1.3 Outline

This thesis is composed of three parts:

1. Understanding and studying IVRs, where we look at MVRL approaches for

modeling them.

2. Exploiting these relationships for learning problems, where we adapt our learn-

ing approaches to specific applications.

3. Improving and expanding upon the relationships themselves, where look at

how we can facilitate favorable properties in the relationships themselves.

When relevant, we describe where we look and what we look for with our models.

1.3.1 Part I: Understanding Inter-view Relationships

In this part, we focus on task-agnostic MVRL approaches.

Chapter 2: Robust Multi-view Representation Learning

In this chapter, we look at discriminative approaches for MVRL. We first propose

a multi-view CCA based model to directly extract IVRs: Multi-view One-vs-Rest

Embedding Learning (MOREL). For each view, we learn an embedding which tries

to explicitly characterize local relationships this view is involved in. The purpose of

this model is to serve as a simple validation of our hypothesis in Section 1.2.

Where to look: Each view explicitly, to characterize specific local relationships.

What to look for: Correlation-based (or similar) individual embeddings, given a view.
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We then move to an extension of multi-view auto-encoders, which uses view-

drop-out during MVRL: Robust Multi-view Auto-Encoder (RMAE). The idea here is

that, by randomly dropping subsets of views during training while optimizing for the

proxy-task of reconstructing all views, we encourage model robustness(i.e. resilience

to missing data).

Where to look: Subsets of views implicitly, to characterize general local relationsips.

What to look for: Reconstruction-based shared embeddings, given any subset.

Take-away: This chapter demonstrates the utility of modeling local IVRs within the

data, either implicitly or explicitly, especially when training our models to be robust.

Chapter 3: Generative Models for Multi-view Representation Learning

In this chapter, we look at generative modeling for MVRL, allowing us to estimate

and sample from probability densities. Here, we follow the same general framework

and view-drop-out training of RMAE, but switch to the proxy-task of likelihood

maximization. For this, we propose a Flow-based approach: Multi-view AC-Flow

(MACF).

Where to look: All subsets of views implicitly, as in RMAE.

What to look for: Likelihood-maximization-based shared embeddings, given any sub-

set.

Take-away: This chapter shows the added benefits from considering generative mod-

els such as sampling missing views, in addition the previously established utility of

implicitly modeling IVRs.

1.3.2 Part II: Exploiting Inter-view Relationships

This part moves on to task-adaptive representation learning approaches.

Chapter 4: Incorporating Down-Stream Tasks into MVRL

In this chapter, we look at incorporating down-stream task information into the

MACF model through propagating domain/application-specific losses upwards into

the training procedure. We consider applications in image and medical data to eval-

uate the utility of adapting the MACF.

Where to look: All subsets of views implicitly.

What to look for: Task-augmented likelihood-maximization-based shared embed-

dings, given any subset.

Take-away: This chapter introduces task-adaptivity into the MACF learning pipeline,

as well as the application of these approaches to real-world learning problems. Through

this, we learn that task-adaptiveness be constructive or detrimental depending on con-

text and the data used.



1.4. RELATED WORK 11

1.3.3 Part III: Improving Inter-view Relationships

This part steps away from MVRL to look directly at how we can facilitate favorable

IVRs directly in the data.

Chapter 5: View Selection and Scalable Active Search

In this chapter, we describe the concept of view-duality, i.e., a reinterpretation of views

as data points and vice-versa. Using this reinterpretation, we can then improve IVRs

through view-selection. In this context, view-selection involves dynamically choosing

views which manifest properties in IVRs which are desirable. There is an analogy

to the active learning paradigm that chooses most useful data-points to adjudicate,

but we wish to choose the most useful views. As a candidate for this, we look at a

scalable extension of Active Search: here, we are given an explicitly quantified local

relationship between views as a pair-wise similarity function.

We first show the connection between Active Search and improving IVRs: This

similarity function may not be task-aligned, so our goal is to select views which are

more relevant to the task, with input from an oracle on each selection we make. E.g.,

we have a social network inducing a follow/friendship based similarity function on

users, but we want to gauge the general sentiment on a topic which only a subset of

users care about.

Where to look: The set of all available views.

What to look for: Views improving task-specific performance.

We then separately look at a scalable extension to deal with large amounts of

data: If we specifically consider linear similarity functions, we can derive an equiv-

alent formulation to the original which can scale several orders of magnitudes. This

formulation prescribes alternate initialization and update steps which reduces the

quadratic and cubic dependence on number of data-points respectively to linear in

both, in lieu of a new dependence on dimensionality features.

Take-away: This chapter introduces a reinterpretation of multi-view data which re-

lates views and data-points, allowing us to use traditionally single-view machine learn-

ing methods for view-selection. It describes Active Search as a candidate method for

the view-selection task, and a highly scalable reimplementation of the same.

1.4 Related Work

Multi-modal machine learning has seen an impetus of recent work, owing to the

increasingly easy access to a vast amount of multi-view data. For instance, video

data, language-to-language translation, and even on-board sensors on self-driving

cars give multiple modalities of viewing the same dataset. It is then imperative to
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interpret and analyze these multiple channels holistically for models to make the best

use of the increased amount of information.

Learning over multiple modalities is often difficult, due to heterogeneous sources of

data, different levels of noise or missing data in some views. This makes it imperative

to extract meaningful information from the different views in a robust fashion. Rep-

resentation learning is thus one of the core directions of multi-modal machine learning

research. It is common as an intermediate step before learning over a down-stream

task.

Many such learning methods are tailored to certain domains, wherein they exploit

the structure available specific to the data. For example, Audio-Video Speech Recog-

nition (AVSR) has been the subject of research for many years now. Traditionally,

deep neural networks are used to handle visual, textual and acoustic data [Ngiam

et al., 2011], [Ouyang et al., 2014], [Wang et al., 2015] where the model projects the

modalities into a joint space [Antol et al., 2015], [Mroueh et al., 2015], [Ouyang et al.,

2014], [Wu et al., 2014]. This representation is then used for the relevant learning

task. It is common to pretrain such networks using Auto-Encoders on unsupervised

data [Hinton and Zemel, 1994].

Multi-view Auto-Encoders are also extended to learn latent representations over

multi-modal data. [Ngiam et al., 2011] learn modality specific AEs and then fuse

together the latent states into a final shared representation. [Silberer and Lapata,

2014] use auto-encoders for semantic concept grounding, with the addition of a loss-

term for object-label prediction. [Wang et al., 2015] fine-tunes the representation

learned by the generic AEs on a given task.

Sequential data often needs additional care while learning latent representations;

the data is not always fixed-length (sentences, video, etc.). RNN/LSTM based

encoder-decoder networks are often used for this where the hidden state at the end of

a variable-length sequence is used as its fixed-length representation [Bahdanau et al.,

2014], [Venugopalan et al., 2014]. RNNs are often used for ASVR [Cosi et al., 1994],

audio-visual affect recognition [Chen and Jin, 2015], [Nicolaou et al., 2011], etc.

Neural networks have their advantages; given domain-specific architectures and

the potential for pre-training, they often show superior performance on certain tasks.

But they need a lot of data and are not always able to gracefully handle missing data

from modalities.

Another popular multi-modal representation learning approach is based on graph-

ical models. Unsupervised methods such as Deep Boltzman Machines (DBN) have

been extended to multi-modal datasets. [Srivastava and Salakhutdinov, 2012a] in-

troduce multi-modal Deep Belief Networks for representation learning. Multi-modal

DBNs are also used for audio-visual emotion recognition [Kim et al., 2013], AVSR

[Huang and Kingsbury, 2013], gesture recognition [Wu and Shao, 2014], and other
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applications [Ouyang et al., 2014], [Suk et al., 2014].

Graphical model based approaches deal with missing data well, and can often

be trained in an unsupervised manner. But they tend to be difficult to train with

high computational costs, often needing approximate variational training methods

[Srivastava and Salakhutdinov, 2012b].

Another class of models are coordinated-representation models, where the modal-

ities are not projected to a joint space but instead are coordinated through similarity

constraints. Some of these approaches are based on similarity models [Weston et al.,

2010], [Weston et al., 2011], [Frome et al., 2013], [Kiros et al., 2014], [Socher et al.,

2014], [Pan et al., 2016], [Xu et al., 2015]. Others are based on correlated embedding

spaces such as CCA-like techniques. CCA models are common for cross-modal re-

trieval problems [Hardoon et al., 2004], [Klein et al., 2014], [Rasiwasia et al., 2010] and

AV signal analysis [Sargin et al., 2007], [Slaney and Covell, 2001]. Nonlinear and deep

extensions of CCA such as Kernel CCA [Lai and Fyfe, 2000], Deep CCA [Andrew

et al., 2013], Correspondence AEs [Feng et al., 2014], etc. have also been proposed.

Coordinated-representation models are usually limited to two-modality problems,

though there have been some extensions into three or more views. Multi-view CCA

[Rupnik and Shawe-Taylor, 2010] learns a projection for each view to maximize some

measure of “global” correlation, but these don’t share the simple eigen/singular-value

decomposition based solutions which 2-view CCA problems often have.

1.5 Contributions

Where does current work fall short?

Here, we describe what we believe to be gaps in the literature, and how we try to

address them:

The main gap in the existing literature for multi-view machine learning is in how

relationships between views are modeled. The majority of the research does not

consider or model these relationships explicitly. That is to not say they are ignored;

they are usually modeled implicitly, through domain or application knowledge. As a

consequence, these methods are typically tailored to the specifics of the data or the

application considered; the interactions between the views are then learned as a by-

product of the choice of models, frameworks and architecture. Existing approaches

which are domain/application agnostic are almost always for the two-view case.

Further, in most cases, the nature of these relationships is rarely discussed. Sim-

ilarly, the nuances within these relationships such as the distinction between global

and local, are not explored. They are considered implicit to the problem itself, such

as linguistic connections between languages for machine translation, or geometric
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calibration between multiple cameras and sensors. Thus, theoretical or statistical

investigations of these relationships are rarely done outside of the narrow contexts of

the applications considered, if they are done at all.

Lastly, our notion of robustness is rarely considered i.e., models typically make

assumptions of how and which views are available. For example, in machine transla-

tion, the learning models almost always know which language is being generated and

which one is given.

To summarize, the related work fails to adequately address the following gaps:

• Explicitly considering and modeling nuanced IVRs, as well as considering ro-

bustness of the learned models.

• Domain and application agnostic modeling of multi-view data, especially in the

case of three or more views.

• A principled theoretical characterization of IVRs.

What does this thesis address?

This thesis tries to primarily address the first two concerns listed above, leaving

the context-agnostic theoretical investigations as a potential next step. Our work

tries to bridge these gaps by proposing MVRL models which, explicitly or implicitly,

characterize IVRs. As mentioned before, the nature of these relationships is not

always easy to categorize and certainly do depend on the context of the problem

involved. We explore this by considering both task-agnostic and task-adaptive models,

and weigh their costs and benefits. In short, contributions of this dissertation are as

follows:

1. Developing new task-agnostic and task-adaptive representation learning meth-

ods for multi-view data by considering IVRs.

2. Building models which place no explicit restrictions on number of views.

3. Introducing and modeling for the notion of robustness, the resilience to arbitrary

subsets of missing views.



Part I

Understanding Inter-view

Relationships
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Chapter 2

Robust Multi-view Representation

Learning

2.1 Introduction

With this chapter, we begin our foray into modeling IVRs. As we stated before, the

core hypothesis in our work is that multi-view data provides us with more information

than just simply multiple streams of data. Understanding how these data-streams in-

teract with each other gives us valuable insight into the system. We just need to know

where to look and what to look for. For this, we look at Multi-view Representation

Learning (MVRL).

Our goal is to extract useful and robust latent representations by leveraging the

these IVRs. Unlike typical existing approaches, we model local relationships. In other

words, we do not want to impose stringent modeling restrictions on which views we

consider and how they interact with each other. We propose two methods to approach

this problem:

• Multi-view One-vs-Rest Embedding Learning (MOREL)

MOREL is an extension of CCA where we consider multiple one-vs-rest CCA

problems, and learn embeddings separately for each view. This is akin to search-

ing for local relationships for each view. To encourage searching for more nu-

anced interactions in the data, we add group-sparse regularization where the

groups correspond to the views.

• Robust Multi-view Auto-Encoder (RMAE)

RMAE is an extension of multi-view auto-encoders, where we move our focus

towards the property of robustness. We achieve this through applying the idea

of drop-out to views: By dropping random subsets of the views while still

17
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reconstructing all views during training, we force the model to uncover useful

local redundancies and overlap.

For this chapter and the next, we will be looking at task-agnostic modeling. We

demonstrate the utility of directing our attention to the where and what of the IVR

through synthetic experiments. We also evaluate our approaches on real-world ex-

periments on multi-view text-based and image datasets.

2.2 Approaches

2.2.1 Multi-view One-vs-Rest Embedding Learning

2.2.2 Background: CCA

Canonical Correlation Analysis (CCA) fits in the intersection of dimensionality re-

duction and multi-view representation learning. CCA tries to find a projections for

multiple (typically 2) feature sets into a common space where the correlations between

them are maximized. The typical loss function is as follows:

max(X1w1)T (X2w2)

Typically, extensions to the multi-view (3+ views) setting [Kakade and Foster,

2007], [Rupnik and Shawe-Taylor, 2010] involve finding a single set of projections for

each view which maximize some overall correlation objective across all views. For

example, [Rupnik and Shawe-Taylor, 2010] formulate their objective as follows:

max
wi
∑
i<j

(Xiwi)T (Xjwj) (2.1)

This formulation is usually more suited to extract global relationships in the data,

unable to capture nuanced local relationships since all the projections are into a

single shared space. To naively extend this to model all possible local relationships,

we would have to do a combinatorial number of multi-view CCA computations, one

for each subset of views.

2.2.3 MOREL

Our proposed method exploits a simple fact: any local relationship contains at least

one view. MOREL solves subproblems for each view, to try to characterize interac-

tions which involve that view. Through this, we learn directed relationships between

a given view and the remaining. The term directed here refers to how each sub-

problem is within the context of a particular view: we look at the contribution to the
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correlation from other views to the given view. Below, we describe the approach we

propose in [Venkatesan et al., 2020].

We cast the problem of latent representation learning into K one-vs-rest CCA

problems, one for each view. Given a single view, we learn the combined projections

for each remaining view to maximize the correlation with the given one. Here, we are

essentially performing a 2-view CCA computation where the remaining views together

form the second “view”. This way, we hope to uncover a dependency structure for

correlation/reconstruction where we can model the “contributions” of any other view

to the given view. Of course, as we have discussed before, a simple concatenation of

views ignores the multi-view structure.

To remedy this, we make use of group-sparse regularization to encourage learning

projections which respect this structure. The groups here correspond to the individual

views within the aggregation of the remaining views. With this, we can define our

objective. For now, we assume that all our projections are linear; we discuss how to

move away from this a little later. For each view, we minimize the following:

min
Pij

f(XiPii,∑
j≠i

XjPji) + λ∑
j≠i

RG(Pij) + γRall(Pi∶) (2.2)

where f(A,B) = −ATB, RG is the group-sparsity regularizer, Rall is a global regular-

izer and Pi∶ refers to the concatenation of all projections Pij where j ≠ i. We typically

take the group-sparse regularizer to be the L∞ norm and the global regularizer to be

the L1 norm. For CCA, we add the associated orthogonality constraints as well:

(XiPii)T (XiPii) = (∑
j≠i

XjPji)
T

(∑
j≠i

XjPji) = I

Since this is basically a 2-view CCA problem for each view, we optimize this using

linearized ADMM following [Suo et al., 2017].

While this approach has been described from the context of CCA, the primary

points to note are the (i) one-vs-rest reduction to uncover local relationships and the

(ii) group sparsity regularization to respect the view-structure of the data. With this

in mind, the function f in Equation 2.2 (and relevant constraints) can be replaced by

other appropriate loss functions which optimize similar criteria. A simple replacement

is the squared L2 reconstruction error: f(A,B) = ∣∣A−B∣∣22. Without orthogonality

constraints, this reduces to a straightforward convex optimization problem. To guard

against the trivial solution here, we can fix Pii to be the identity. Here, we define a

new term to represent the combination of all the projection matrices:

Definition 2.2.1 (Redundancy Matrix). The Redundancy Matrix M is the block

matrix where the block in i
th

row and j
th

column is to the projection Pij from view
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i into view j. I.e,

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Id1 ⋯ P1K

⋮ ⋮ ⋮

PK1 ⋯ −IdK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.3)

With this, we can rewrite the problem as a linear system solved with least squares:

∣∣[X1⋯XK]M∣∣22 (2.4)

This formulation shows that we are essentially trying to construct an M which has

the data distribution as its null space. Group-sparse regularization here translates

to block-sparse regularization of M. We expect that, by optimizing this loss, the

sparsity structure of M reveals information about the directed relationship between

different views.

So far, we have assumed linear projections Pij but we can also pick classes of

projection functions Pij(Xij) which we can optimize over. For example, deep neural

networks are straightforward to incorporate into this formulation; we can apply the

group-sparsity penalty over the parameters of each projection network.

To summarize: we go back to the where and what of IVR: MOREL looks at each

view individually, and it looks for relationships in the form of embeddings which

maximize one-to-rest correlation. It is important to keep in mind that MOREL does

not uncover all possible local relationships. But the formulation guides us toward

recovering the more apparent and prominent ones.

We note that propose MOREL primarily as a means to validate our hypothesis of

the gestalt nature of multi-view data. Our evaluations for this are on simple synthetic

data where we can induce the types of IVR we want to investigate.

2.2.4 Robust Multi-view Auto-Encoder

We now move onto a more practical approach based on Multi-view Auto-Encoders

(MVAE), better tailored for real-world applicability. We will also turn our focus to

the notion of robustness.

The typical strategies for training an MVAE have the same concerns outlined in

the previous section; they try to directly learn a shared embedding space which best

reconstructs all views ( [Ye et al., 2016], [Wang et al., 2015]). This often means

learning a single bottle neck representation shared across all views. Just as before,

this implicitly constrains the model to only look at the intersection of all views, i.e.

global relationships.

In our proposed framework, Robust Multi-view Auto-Encoder (RMAE) [Venkate-

san et al., 2020], we tackle this problem through two ideas. The first is the structure

of the framework itself. The RMAE is composed of two tiers; one is at the view



2.2. APPROACHES 21

Figure 2.1: This is the outline of the Robust Multi-view Auto-Encoder for 5 views.

Each bottom arrow represents the encoder for its respective view, and each upper

arrow represents the decoder. Li is the encoding for view i and LS is the global latent

representation. The bottom arrows are dotted to represent potential drop-out during

training time.

level, where every view has its own individual encoder network, and the second is

common to all views. The individual encoders produce the latent embeddings Li for

their respective views, which are then concatenated and fed through an additional

meta-encoder to produce the final global latent representation Lall. This framework

is depicted in Figure 2.1.

The second idea lies in how we introduce robustness into our framework. In this

context, we take robustness of a representation as the ability to faithfully reconstruct

all views given an arbitrary subset of available views. For this, we borrow from

the idea of dropout; every batch, we drop a different, random subset of views while

forcing the reconstruction of all views. In this way, the training encourages the latent

representation to exploit redundancy of information across different views. We can

also sample “available” views during training using prior knowledge; e.g., we can

incorporate knowledge that a specific view will never go missing by always having it

as input in training.

To emulate dropout more appropriately, we perform a relative scaling of the input

to the encoders based on number available views. In dropout with probability p,

the output of the used units are scaled by 1

p
to compensate for the missing unites.

Similarly, we scale the available views by K

∣Kα∣
. However, unlike in unit-level dropout,
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we also do this during test time when we have missing views.

We can control where the view-dropout takes place; we can either zero out the

input Xi or we can zero out the latent encoding Li. The former method is similar to

encouraging every individual view encoder to output an informative “mean” embed-

ding which works well in lieu of missing data. The latter localizes the robustness of

the encoding to the meta-encoder level. In general, we go with the former, since it

allows the view-specific encoders to participate in the training procedure even when

the views are taken to be missing.

This is similar to the Variational Auto-Encoder with Arbitrary Conditioning

(VAEAC) [Ivanov et al., 2019], which is a generative model for estimating arbitrary

missing feature values in data (e.g., in-painting). While theirs is a single-view ap-

proach, similar to RMAE, they also consider sampling “dropped” features from some

prior distribution. However, our approach allows us to incorporate view-specific en-

coders, since we can exploit the structure in our data. These view-specific encoders

can be learned while training, or can be pre-trained or otherwise fixed (e.g., through

domain knowledge).

To summarize, let us look at the where and what again. RMAE implicitly searches

over different subsets of views; we say implicit since we do not learn parameters spe-

cific to any given subset of views. It looks for reconstruction-based characterizations

of information overlap a given subset of views.

Alternative MVAE approaches

We also consider the following MVAE-based competitors against RMAE:

• Intersection MVAE (IntersectMAE): This version of the MVAE considers

a single shared bottleneck representation.

• Concatenation MVAE (ConcatMAE): This version of the MVAE just pre-

concatenates the views into one before feeding them into a standard uni-modal

auto-encoder.

The framework for these two versions of the MVAE are shown in Figure 2.2.

2.3 Synthetic Experiments

2.3.1 Synthetic Data

Here, we describe a simple approach for the construction of a multi-view dataset with

redundant IVRs. Figure 2.3 shows a Venn diagram for the case with three views
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Figure 2.2: This figure shows the frameworks of the IntersectMAE (left) and Concat-

MAE (right) versions of the MVAE.

X1 X2

X3

Figure 2.3: Synthetic muti-view dataset construction with inter-view redundancy.

X1, X2 and X3.

We can treat each individual partition as having an independent data distribution

which can contribute to the overall latent space of the data. Any partition which lies

within the circle of a given view is accessible by it; thus, view X1’s latent space

contains the contributions of the four partitions contained within its circle. For

example, the three views could be cameras with the circles corresponding to their

fields of view, and the individual partitions are regions which are accessible to a

specific subset of the cameras.

To construct a redundant multi-view dataset, each of these partitions can be

turned “on” or “off” to allow or restrict their contribution to the latent space. For
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example, if we only turn on X1⋂X2, X2⋂X3 and X3⋂X1, then, this would give us

a dataset where any two views are enough to reconstruct the entire latent space. This

allows us to customize the redundancy-relationships offered by the different views, and

study our methods under different levels/forms of this redundancy.

2.3.2 Evaluating MOREL

4-view problem with simple redundancy Here, we consider the simple case

where any two views are enough to reconstruct all other. We extend the three view

case in the previous description as follows: We consider four underlying independent

feature partitions A,B,C,D. The four views are created as X1 = [BCD], X2 =

[ACD], X3 = [ABD] and X4 = [ABC], with some noise added. E.g., each of

A,B,C,D are individual vital signs of a patient (e.g., heartbeat, blood pressure).

Any device Xi can potentially measure multiple readings at once, so different devices

can measure the same readings.

For MOREL, we used the reconstruction loss, without the CCA constraints. Fig-

ure 2.4 shows the redundancy matrix M learned using only least-squares while 2.5

shows M learned with the addition of group-sparse regularization. The rows repre-

sent individual one-vs-rest CCA subproblems. Each non-diagonal block on each row

represents the projection from the column-view to the row-view. Reconstruction loss

is close to 0 for both cases.

Here, blocks getting zeroed out is favorable; it shows that the inclusion of group-

sparsity allows the model to ignore some views and find more exclusive IVRs.

2.3.3 Evaluating RMAE

For the RMAE, we ran a similar experiment but with the goal of understanding how

reconstruction error of all views varies with number of available input views. Here,

we looked at experiments with varying number of total views.

Here we have a plot of a curve for average error of reconstruction given number

of available views for a 5-view and 6-view system respectively. Figures 2.6, 2.8 shows

the trend we would expect; the average reconstruction error of all output views goes

down the more input we have. “Relative error” refers to error relative to the largest

single-view reconstruction error across all methods. In general, the trend we notice

is that the error of reconstruction of an output view decreases with more input views

which are locally redundant with it. Again, this is something which we would expect.
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Figure 2.4: Redundancy matrix after optimizing using unregularized least squares.

The learned projections do not exploit the redundancies.

Figure 2.5: Redundancy matrix after optimizing using group-sparse regularization.

The learned projections largely ignore some redundant views in the reconstruction.

Performance under different levels of redundancy

Next, we consider the problem of reconstruction using the learned robust latent rep-

resentation of the RMAE. The synthetic dataset family we look at are those where

every numbered view intersects in information with only the ones next to it (indexed

1 less and 1 more in this case). The algorithms we compare here are the RMAE, the
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ConcatMAE and the IntersectMAE. We show training and test-set errors for average

reconstruction of all views as a function of available input views.

We also try to show an empirical estimation of “usefulness” of a single view under

each algorithm by plotting the one-to-one reconstruction error for each view to each

other view. These are given in Figures 2.7 and 2.9. We would hope that the methods

are able to recognize which views have local intersections of information and are able

to reconstruct those views better.

Figure 2.6: [5-view problem] Train and test reconstruction error vs. number of views

for different AE competitors. This plot also shows the 1-sigma confidence interval for

different choices of available views.

The overall performance of the different methods is as expected. Since Intersect-

MAE directly learns a bottleneck representation which is common to all views, the

training implicitly tries to learn the intersection of information across the different

views, as opposed to the union. This is evident from the training vs. test error curves

as well as the single-view error matrices. The pattern is the same for a different

number of views.
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Figure 2.7: [5-view problem] One-to-one single-view reconstruction for different AE

competitors.

Figure 2.8: [6-view problem] Train and test reconstruction error vs. number of views

for different AE competitors. This plot also shows the 1-sigma confidence interval for

different choices of available views.

2.4 Real-world Experiments

2.4.1 Datasets

Here, we briefly describe the datasets we consider:
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Figure 2.9: [6-view problem] One-to-one single-view reconstruction for different AE

competitors.

• 3 Sources News Dataset
1

This dataset consists of news articles as collected from

three well-known news sources: BBC, Reuters and The Guardian. Each view

news-source is considered a view, and the articles are samples from them. Each

article corresponds to some real world event; every news source that publishes

an article on the event has a sample for that data point. Not all sources write

articles for every event, so we have missing data from some views.

• NUS-Wide-Lite [Chua et al., 2009]
2

This dataset consists of various images and

81 categories that they may contain. These categories are objects, people, types

of landscape, etc. so multiple such categories can be present in each image. We

take a subsampled version of this dataset with 550 training and test images,

and look at detecting three different categories: lakes, people and sunsets. Sub-

sampling is done to preserve category prevalance from the main dataset. The

views are five different image featurizations: (i) color histogram (CH), (ii) color

correlogram (CORR), (iii) edge direction histogram (EDH), (iv) wavelet texture

(WT) and (v) block-wise color moments (CM).

• N-MNIST [Basu et al., 2017]
3

This dataset consists of three noisy versions of the

original MNIST dataset. The noise functions are: (i) additive white gaussian

noise (AWGN), (ii) motion blur (MB) and (iii) reduced contrast with additive

white gaussian noise (RCAWGN). We take a sub-sampled version of the dataset

with 6000 training and 600 test points, while preserving digit prevalences.

1
http://mlg.ucd.ie/datasets/3sources.html

2
http://mlg.ucd.ie/datasets/3sources.html

3
https://csc.lsu.edu/ saikat/n-mnist/
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2.4.2 Evaluation

Down-stream tasks

Here, we look at the performance of the RMAE as a representation learning method

for down-stream tasks. We compare the representation learned by RMAE with those

learned by CAT, IMAE and CAE in classification/regression performance.

2.4.3 Results

Here, we show plots for training and testing error curves using the different methods.

We notice over the different experiments that there is no clear winning method among

the ones tested. But RMAE is always either the best or the second best among the

testing errors, when all views are available. RMAE’s consistent performance shows

that it is able to extract meaningful information about views and their interactions.

Figure 2.10: [3-Source News] Plots for accuracy vs. number of available views for the

different approaches.
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Figure 2.11: [NUS-WIDE-Lite: Lake] Plots for accuracy vs. number of available

views for the different approaches.

Figure 2.12: [NUS-WIDE-Lite: Person] Plots for accuracy vs. number of available

views for the different approaches.
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Figure 2.13: [NUS-WIDE-Lite: Sunset] Plots for accuracy vs. number of available

views for the different approaches.

Figure 2.14: [N-MNIST] Plots for accuracy vs. number of available views for the

different approaches.

2.5 Conclusion

We have described two approaches for MVRL: (i) Multi-view One-vs-Rest Embedding

Learning with group sparse penalization and (ii) Robust Multi-view Auto-Encoder
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with randomized view-dropout. In both these approaches, we demonstrate the utility

of modeling local IVRs; if we have an idea of where to look and what to look for, we

can effectively model IVRs.

MOREL is a simple testament to the validity of our hypothesis, and RMAE is

a more practical approach for MVRL which focuses on robustness as an important

property of our model. Results on synthetic and real world experiments reaffirm the

relevance and efficacy of our models.



Chapter 3

Generative Models for Multi-view

Representation Learning

3.1 Introduction

So far, we have looked at understanding IVR through discriminative modeling for

MVRL. In this chapter, we look at introducing generative modeling into the frame-

work we have been working with. This opens our methods to broader applicability,

e.g., sampling missing views, likelihood estimation, etc.

Generative modeling provides us an intuitive perspective to understand multi-

view data, i.e. an underlying system with an associated data-generation process.

Each view is an observation model which provides a limited window into this process.

These observation models can be assumed to be independent of each other given the

process; of course, we can never truly observe this. Thus, our goal is to use these

observation models to learn the distribution of a proxy for the underlying process,

akin to learning a joint distribution over all views.

This is philosophically different from our original approach where we optimized

for reconstruction of absent view. This indirectly assumes that, in the ideal case, all

the views are available; the model is then trained to emulate this ideal case. But

this isn’t always true – we can have asynchronous systems where we can no longer

assume that, for any subset of views, there exists a data point containing all of them.

For example, health records of patients in different geographical locations are unlikely

to have gone to the same hospital, but still may have the same underlying medical

concerns. The data from such patients might not have much clear overlap, depending

on how different hospitals operate and what equipment they have available. But the

underlying data distribution can still be closely related. In such cases, optimizing for

33
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“reconstruction” of unavailable views may not the right objective, but learning the

underlying data distribution is still relevant.

For our work, we consider flow-based generative modeling. The next sections

give a primer on flow-based modeling, followed by its application to our models for

MVRL.

3.2 Background: Flow-based Generative Model-

ing

Flow-based models are based on the philosophy that a good representation of data is

one in which the data distribution is simple and easily modeled. These approaches

( [Dinh et al., 2014], [Dinh et al., 2016]) learn a sequence of invertible transform

over the input data to a latent state where the base distribution has a simple form.

Samples in the latent space and then be transformed into the data space, as long as

we know the formulaic relationship between the two.

For the more technical details, we consider the case of single-view data in this

section. Given an invertible transform f and a data point x, the data distribution is

related to the distribution in the latent space L using the chain rule as follows:

pX(x) =
»»»»»»»»
det

∂f(x)
∂x

»»»»»»»»
pL(f(x)) (3.1)

Here,
∂f(x)
∂x

is the Jacobian matrix of the transform f , and det is the determinant

function.

The transform f is typically chosen such that the determinant of the Jacobian is

simple to compute; for example, the determinant of an upper triangular Jacobian is

just the product of the diagonal values. Even with such restrictions on the transforms,

we can still use powerful and expressive function classes (including neural networks)

to represent these invertible transforms. Using the fact that the Jacobian of a compo-

sition of functions is the product of the Jacobians of the individual functions, f can

be represented as a cascade of such transforms, allowing us to build more complicated

transforms while maintaining the simplicity of the overall computation.

Given a transform f represented by a composition of T transforms f
(1)

to f
(T )

,

and a base distribution parameterized by θ, the overall loss function then is given by

the negative log-likelihood:

Lnll(X) = −
T

∑
t=1

log
»»»»»»»»»
det

∂f
(t)

∂f (t−1)

»»»»»»»»»
− log p(f(X); θ) (3.2)

Sampling from these models is very straight-forward as long as we can efficiently

sample from the base distribution. We just apply the inverse of the learned transform
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to samples from the base distribution to produce samples in the data distribution.

Flow-based approaches model and learn these transforms ( [Dinh et al., 2014], [Dinh

et al., 2016]), and sometimes both the transforms and the base distributions [Oliva

et al., 2018].

3.2.1 Flow-Transforms

In this section, we will give an overview of some of the common flow-transforms [Dinh

et al., 2014], [Dinh et al., 2016] and [Oliva et al., 2018], which we will adapt for our

methods.

• Fixed Linear Transform

This is a transform in the form of an invertible square matrix M . Inverting

an arbitrary matrix is not straightforward, so M is not represented directly.

Instead, it can represented by its LU decomposition, i.e. M = LU . Inverting M

then involves just solving a triangular system of equations. The determinant of

the Jacobian is also easily computed for triangular matrices.

• Coupling Transforms

Coupling transforms split the input covariates into two subsets, and transform

one of the subsets using a function parameterized by the other subset [Dinh

et al., 2014], [Dinh et al., 2016]. Given a D dimensional covariate x, without loss

of generality, the input can be split as x = [x1∶d;xd+1∶D]. Then, the transform

can be represented as follows:

z1∶d = x1∶d

zd+1∶D = f(xd+1∶D;x1∶d)
(3.3)

With f being invertible, computing the inverse of the coupling is easy. Fur-

ther, the Jacobian is block triangular with one of the diagonal blocks being the

identity, and the other corresponding to the Jacobian of f .

In our models, we mainly consider an affine scale-and-shift coupling transform:

z1∶d = x1∶d

zd+1∶D = xd+1∶D ⊙ exp(s(x1∶d)) + t(x1∶d)
(3.4)

where ⊙ is the element-wise product s and t are functions which map from

Rd
→ RD−d

. These can be parameterized by neural networks.
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• Misc. transforms

We also consider a few simple invertible transforms without learnable param-

eters like LeakyReLU, the reverse transform (just inverting the indices of the

input), elementwise sigmoid and logistic functions. The inverses and determi-

nants of the Jacobians of these transforms are simple to compute.

3.2.2 Base Distributions

These are distributions of the latent space; the choices are usually those which are

simple to model and efficient to sample, e.g., multi-variate Gaussians (with diagonal

covariance) They can also be learned along with the transforms, e.g., Auto-Regressive

Gaussian mixture models [Oliva et al., 2018]. The parameters for the mixture models

are usually given by fully connected neural networks over the transformed latent

variables.

3.3 Flow-based Multi-view Representation Learn-

ing

Now, we move onto the application of flow-based models to multi-view data. We

adopt the same two-tier framework as in RMAE from Chapter 2 (Figure 3.1), where

we have view-specific as well as shared encoders. We will start with the simple case

where we have all views available at train time, and then move on the more general

case where we have missing views.

3.3.1 Case 1: All views available

To start with, we set the notion of robustness aside and assume all views are available

at train time. Our goal here would then be to just learn a joint distribution over

these views. As we described before, flow-based models learn a cascading sequence of

invertible transforms into a latent space with a “simple” distribution. The pipeline

for this just replaces the shared encoder from Figure 3.1 with flow based transforms.

The view-specific encoders may or may not be flow-based.

3.3.2 Case 2: Missing views at training/test time

Here, we consider the more general case where we can have an arbitrary subset of

missing views. For this, we propose a multi-view extension of ACFlow [Li et al., 2019],

which looks at the single-view case of flow-based data imputation when an arbitrary
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Figure 3.1: Two-tiered structure for the RMAE from Chapter 2.

subset of covariates are missing. The idea is to learn conditional flow-transforms

where the parameters of the transforms are functions of the available covariates.

In our case, we have the advantage of having some structure in the missing covari-

ates: we assume that views go missing as a whole. I.e. if a view is available, all of its

covariates are available and if a view is missing, none of the covariates are available.

Conditional Flow-Transforms

We follow [Li et al., 2019] and propose conditional variants of the transforms described

in the previous section. Conditioning here involves parameterizing the transforms

using the available views. Let us represent the available/observed views as Xo, and

the missing/unobserved views as Xu The flow-based transforms themselves are the

same as before, but the parameters which define them depend on the conditioning

variables. The fixed linear transform is a straightforward implementation of this; the

values of the L and U matrices are now outputs of a neural network instead of directly

being optimized over.

The coupling transforms are more involved. Consider a transform operating over

a single view xv, conditioned on Xo. Following Equation 3.3, we split xv into two

subsets xv = [x1∶d;xd+1∶D]. Then, can represent the coupling transforms in two ways.

• Meta parameterization: We take zd+1∶D = f(xd+1∶D; g(x1∶d;Xo)), where g pro-

duces “meta” parameters of the coupling function f given the observed views.

This involves two steps, (i) computing the parameters for and applying g, and

(ii) the same for f .
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• Direct parameterization: We take zd+1∶D = f(xd+1∶D; g(x1∶d, Xo)), where g takes

bothXo and the first split and produces the parameters for the coupling function

f . In this case, the two steps are conflated into one, since g is directly applied

on both the initial split and Xo.

The former is more general and has more representation power, but is computa-

tionally very expensive. If f and g are represented by neural networks, the “meta”-

network g would need to be computed for every single data point, since Xo would

not be the same for different data points. This would mean that an individual neural

network must be created an applied for each individual data point.

The latter is a lot less expensive since it is an extension of the non-conditional

version where the input is a simple function of both Xo and x1∶d (e.g., concatenation).

This reduces the flexibility of the learned transforms but eases the computational

load significantly.

Base Distributions

Here, we have similar choices for our base distribution. We can use a simple parameter-

less distribution, or a parameterized AR mixture model. The parameters of the mix-

ture model can depend on both Xo and the latent variable zL.

Pipeline

Again, we facilitate robustness through arbitrary conditioning, by using the same

training strategy as in RMAE – we randomly drop subsets of views during training

while still trying to model the entire joint distribution. Now, the dimensionality of Xo

depends on the views which are missing, which is not known ahead of time. [Li et al.,

2019] deal with this by zero-imputing the missing data, as well as adding a bit-flag

of the same size as the data that represents whether any given covariate is available

or not. This produces a fixed dimensional featurization which can be used as inputs

to the function which produces the parameters for the flow transform. The flow-

transform is then constructed from the subset of these produced parameters which

correspond to the unavailable covariates.

In our case, we can exploit the view-structure of data to circumvent the arbitrary

dimensionality of Xu. Since we assume that any given view is either entirely available

or entirely missing, any view i is either in Xo or Xu, but not both. This allows us to

learn conditional transforms for each view within Xu individually. The conditioning

over Xo still requires us to deal with the arbitrary dimensionality of the observed

views. We use the same zero-imputation and bit-flag introduction strategy as in

ACFlow.
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Our overall pipeline then consists of individual view-based transforms/encoders,

followed by individual conditional transforms for each view. For our conditional cou-

pling transforms, we use the direct parameterization approach. We call our proposed

method Multi-view AC Flow (MACF).

Characterizing IVRs

Once again, we summarize MACF as a method for MVRL by considering the where

and what of IVR. Similar to RMAE, MACF implicitly searches over different subsets

of views. But here, it looks for characterizating joint likelihood estimates through the

information overlap a given subset of views.

Note: The requirement of invertible transforms implies that the latent space and

the data have the same dimension. For multi-view data, we can use the view-specific

encodings to perform dimensionality reduction if needed.

3.3.3 Experiments

For evaluating MACF, we use a multi-view version of the original MNIST dataset:

we split each image into four quadrants to represent the views. Our dataset consists

of a small subset of MNIST digits, with about 1500 training digits, stratified over the

different digit classes.

We encode each view by first reducing its dimension using a truncated SVD: we

keep as the dimensions with singular value over 5% of the largest singular value. This

comes up to about 50 dimensions per view. For the common flow-based transform,

we use three scale-shift coupling segments, interleaved by reversal transforms. A

segment here corresponds to four individual scale-shift coupling transforms in a row,

where we alternate the fixed and transformed covariates in each. We use a standard

multi-variate normal for our base distribution.

Digit Completion

We look at digit completion/sampling under different numbers of missing views for

our model. In Figures 3.2, 3.4 and 3.6, we show samples of test digits given various

numbers and combinations of available views, along with the true digit at the top. The

availability pattern is depicted to the left of each row, where green means available.
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Figure 3.2: Sampling whole digits given one view.

We also evaluate our method using the McNemar test against the following: (i) the

partial input digits with missing views zero-imputed (baseline), and (ii) the ground-

truth completed digit. We used four views for this experiment. The Figures 3.3, 3.5,

and 3.7 show the results of the test across different sets of available views. Column

1 corresponds to points that the reference model correctly classifies. Column 2 cor-

responds to points that the reference model gets wrong. Similarly, Row 1 and Row 2

correspond to our model correctly and incorrectly classifying the point, respectively.

The blue (top left of every box) corresponds to the ground truth model, and the red

corresponds to the baseline. Each 2x2 matrix thus shows McNemar Test results for

both the reference models.

In general, as the number of views increases, the digits sampled become more

reliable in their completion of the true digit. Failure cases are often graceful where

the sampled digit looks reasonable, even if different from the true digit.

Sampling complete digits from a single instance

In this experiment, we took a single input digit (with missing views) and sampled

multiple complete digits from the learned distribution. For this, we considered 3-view

horizontal splits of the MNIST digits, and sampled the middle given the top and the

bottom third. The remaining setup is the same as before, i.e. the same strategy for

view encoders, the shared flow-transform, etc.

The inputs were two randomly chosen digits from the test set – 0 and 7. The

samples are shown in Figures 3.8 and 3.9. Here, we often observe what we call a
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Figure 3.3: McNemar evaluation of benchmark MNIST classifier on Test vs. ground

truth and zero imputed with 1-view available.

graceful failure, where the completed digit is not the same as the input, but is a

reasonable completion given the limited available views; e.g., 9 for 7, 8/6 for 0.

3.4 Conclusion

In this chapter, we looked at a generative modeling extension of our RMAE us-

ing flow-based methods: Multi-view AC Flow (MACF). We evaluated MACF on

MNIST digits, split into multiple views, on digit classification and digit completion.
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Figure 3.4: Sampling whole digits given two views.

Our results show the representative power of the MACF; producing reasonable sam-

pled completions for missing views, and often failing gracefully when the completion

doesn’t match the original digit.
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Figure 3.5: McNemar evaluation of benchmark MNIST classifier on Test vs. ground

truth and zero imputed with 2-views available.

Figure 3.6: Sampling whole digits given three views.
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Figure 3.7: McNemar evaluation of benchmark MNIST classifier on Test vs. ground

truth and zero imputed with 3-views available.
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Figure 3.8: Multiple samples of the middle third given the same digit 0 as input. Top

left digit is the original.
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Figure 3.9: Multiple samples of the middle third given the same digit 7 as input. Top

left digit is the original.



Part II

Exploiting Inter-view Relationships
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Chapter 4

MVRL for Down-stream Tasks and

Application Domains

4.1 Introduction

So far, our proposed MVRL methods have been agnostic to any down-stream task that

could leverage their learned representations. Since our task-agnostic MVRL methods

operate on unsupervised proxy-tasks such as reconstruction and likelihood maximiza-

tion, they can always be applied to general multi-view data-sets. Indeed, they can

be used as meta-learning approaches, which are modular and straight-forward to use

right off the shelf. This flexibility comes at the cost of the application-context-oriented

specializability. Their application to a given task carries the implicit assumption that

the representations they have already learned are relevant for the given downstream

task.

In this chapter, we look at extensions of our MVRL modeling which introduce

context-awareness in a given application or domain. In other words, we take a look

at the other side of the flexibility-vs-specificity trade-off. We can consider two avenues

to approach this:

• Task-adaptive

One concept is to tailor our models to the given down-stream application, e.g.,

classification, density estimation, etc. Here, we essentially have information in

the form of a down-stream loss function to contend with. This would allow

us to directly influence the representation learning process, guiding it towards

a latent space more conducive to tackling that specific down-stream task. As

a consequence, our MVRL approaches will no longer qualify as meta-learning

approaches.

• Data-adaptive

49
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The other concept is to adapt our models to the domain of data. For instance,

image or text data have a plethora of available encoding methods which we

can plug-in directly into our models. As such, our models already allow us to

gracefully introduce this form of adaptivity, since the choice of individual view

encoders is not constrained.

We might also have to change the framework itself for special cases such as

asynchronous data, where we assume little-to-no correspondences between some

sets of views. For example, consider the case of A/B testing for an update to a

website. Any given user is only exposed to either A or B, not both; if we try to

featurize browsing patterns on a given version (A or B) as views, there will be

little to no correspondence in the data for the views. The idea of view-dropout

cannot be directly applied to this case, which has been a crucial cog in many of

our methods, so this would call for a redesign of the training framework.

In our research, we look at task-adaptive models. As noted before, our models

tend to be implicitly data-adaptive, insofar as we maintain our original framework.

We first look at augmenting the MVRL loss function with the task-specific loss.

Following this, we consider applications with image and temporal data to evaluate

our task-specific learning approach.

4.2 Task-Adaptative MVRL

Task-adaptation essentially introduces supervision into representation learning by

coupling it with task-specific information. The most straightforward way to connect

an application to our learning models is to explicitly incorporate the down-stream

loss (DSL) into the MVRL optimization.

We do this by simply adding the DSL to the negative-log-likelihood (NLL) loss of

our MACF procedure, with a tradeoff parameter to control its influence in training.

The only constraint is that we must be able to acquire gradients from such a model, so

we can apply standard optimization procedures such as Stochastic Gradient Descent

(SGD). Augmenting the loss in Equation 3.2, our new loss becomes the following:

L(X, Y ) = Lnll(X) + γLdsl(X, Y ) (4.1)

where Ldsl is the DSL, Y is additional information (e.g., labels) for the task and γ is

the trade-off parameter.

The DSL could involve a separate pre-trained model as in the case of our digit

detection, or a trainable model which is optimized simultaneously with the repre-

sentation learning. Our evaluation only uses pre-trained or benchmark down-stream



4.2. TASK-ADAPTATIVE MVRL 51

models for the DSL; the latter is more prone to overfitting on the training data, unless

careful protective measures are put in place.

In the following section, we consider the case where we have the labels available

at training time but not at test time.

Figure 4.1: 1-view available: Digit completion with 1-view available, given different

DSL trade-off coefficients.

Figure 4.2: 2-views available: Digit completion with 2-views available, given different

DSL trade-off coefficients.
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Figure 4.3: 3-views available: Digit completion with 3-view available, given different

DSL trade-off coefficients.

4.2.1 Experiment: MNIST Classification

In this section, we look at including the classification loss from an off-the-shelf MNIST

classifier into our overall loss function. The classifier we use here is the same from

the ONNX zoo we used in the previous chapters. Since the classifier itself has been

optimized for MNIST, we freeze the parameters of the model, and just use the gra-

dients produced by the classifier for the parameterization of our original framework.

Every batch, we sample and complete the digits, and feed them to the benchmark

classifier, which gives us logits as output. Given these logits, we use the DSL as the

cross-entropy loss for classification. We evaluate performance on the down-stream

task against different trade-off parameters: γ = 0.0, 10.0, 100.0, 10
3
, 10

4
.

In Figures 4.1, 4.2 and 4.3, we look at digit completion of the same digits over

all the values for γ. We notice that as γ increases, the digit gets progressively more

garbled. In general, γ = 0.0 and 10.0 seem to produce the most visually reasonable

digits for various numbers of views available. But, we see from Figures 4.4 and 4.5,

that benchmark classification accuracy goes up with γ, even though the sampled

digits appear to look more garbled to a human observer. But, the appearance of

the digits reconstructed from partial views is not as relevant in this context as the

observed boost of the downstream digit recognition performance.

Discussion

Often, we observe an inconsistency between a visual evaluation of the digits and the

benchmark classifier accuracy. This shows that including the DSL in our training pro-

cedure indeed helps the downstream task of digit recognition, but in some application

contexts it might not actually be what we want. Our method, however, certainly is

doing what it is supposed to do: optimize for the DSL as a part of the overall training

procedure.

Alas, results of using DSL might not always be conducive of what constitutes

a “good” reconstructed digit to a human observer. This is especially evident when
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Figure 4.4: [Train] Benchmark classification error vs. DSL trade-off coefficients. The

light lines are plots for different view-subsets of a given number of views. The bold

lines reflect averages over a given number of views.

we have very few views available to attempt the reconstruction. With very limited

information, we can have multiple, reasonable digit completions which make sense to

us as humans; even if the produced digit does not visually match the intended label,

these “failures” can be graceful. But the inclusion of the DSL essentially pigeonholes

us into a specific digit, even when a single quadrant of a digit barely constrains the

viable completion possibilities. This way, the MVRL approach does not necessarily
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Figure 4.5: [Test] Benchmark classification error vs. DSL trade-off coefficients. The

light lines are plots for different view-subsets of a given number of views. The bold

lines reflect averages over a given number of views.

learn what a good digit looks like. Rather, it learns how to support the benchmark

classifier, by considering the classifier’s evaluation criterion.

The lesson learned here is that we need to be wary of how exactly we want to

influence the representation learned. We can possibly aid the particular case above

by first estimating likelihoods of different digits given the available views, and then

choosing one such digit as the candidate for digit completion. Of course, this so-
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lution is specific to the problem at hand; domain expertise might be imperative in

formulating a good DSL as well as an augmented training procedure for a given task.

4.3 Application Domain: Medical Temporal Data

In this section, we take a look at applying our methods to a specific application with

temporal data. For this, we look at the following medical dataset:

Figure 4.6: [Train] Sleep stage classification vs. available views using pre-trained

DSL, given different DSL trade-off coefficients.

MIT-BIH Polysomnographic Database This dataset consists of the recording

of multiple physiological signals from individuals during sleep. Over 80 hours of

physiological data has been collected from over 16 male subjects, between 32 and 56

years of age. These signals include ECG, EEG, blood pressure and respiratory signals

among others, sampled at 250Hz. Each record is annotated with labels denoting stages

of sleep and apnea, once every 30s through the duration of recording.

We take the three signals which are available for all subjects as our three views:

View 0: EEG, View 1: ECG, View 2: Resp (nasal). For each of these signals, we
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Figure 4.7: [Test] Sleep stage classification vs. available views using pre-trained DSL,

given different DSL trade-off coefficients.

extract a wide range of time-series features using the tsfresh Python library, followed

by dimensionality reduction to go down to 30 dimensions per view.

There are six sleep-related labels we consider in this data-set: Awake, Sleep stages

1-4 and REM sleep. The annotations provided for the subjects are recorded every

30s, so we have taken 30s time-windows to represent individual data-points from

the different views. We use a train-test split of approximately 85%-15%, as split

over the subjects. Similar to the MNIST experiments, we evaluate classification

performance with the MACF+DSL trained over different trade-off coefficients: γ =

0.0, 10.0, 100.0, 10
3
, 10

4
.

Unlike the MNIST data we looked at before, this dataset does not have a publicly

available benchmark classifier to use for computing DSL gradients. So, we pre-train

a fully connected neural network for sleep-classification as the DSL, and freeze its

parameters for the MVRL training loop.

We evaluate the classification performance using three classifiers: a separate multi-

layer perceptron (MLP) different from the DSL, a random forest (RF) classifier and

the original DSL itself. The first two classifiers are trained using grid search over

tunable parameters (layer units for MLP, max depth and max features for RF) +

5-fold cross validation stratified by subject. Figures 4.6 and 4.7 show the train and

test classification performance for the DSL classifier over different available views and
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Figure 4.8: [Test] Sleep stage classification vs. available views using Deep Net (MLP),

given different DSL trade-off coefficients.

values of γ. Similarly, figures 4.8 and 4.9 show the test classification performance of

the MLP and RF.

4.3.1 Discussion

For the polysomnographic data-set, the inclusion of the DSL produces an intuitive

trend across the various classifiers. Evaluating on the DSL loss itself, we see the

trend of improved down-stream classification performance with increasing γ. This is

evident in both the train and test set evaluations.

For the external classifiers, again, the test set classification performance exhibits

the same patterns, i.e., improved classification with increased influence of the DSL

loss. This shows that the MVRL procedure is able to extract generalizable task-

specific information that can be utilized by different down-stream models, even if

they do not explicitly participate in the training procedure. The effect of γ on test

data is understandably more mild for all three classifiers, but the trend is still clearly

observable.
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Figure 4.9: [Test] Sleep stage classification vs. available views using Random Forests,

given different DSL trade-off coefficients.

4.4 Conclusion

This chapter investigated task-adaptive MACF, where we directly incorporated the

down-stream loss (DSL) into our representation learning training procedure. We eval-

uated this approach on MNIST digit completion, as well as the MITBIH Polysomno-

graphic dataset for classifying sleep-stages.

Our experiments show that task-adaptivity does indeed help improve down-stream

model performance. For the sleep-stage classification experiment, the inclusion of the

DSL generally shows an improvement for different types of classifiers, as well as

different available views.

But we must be careful as to how we utilize the DSL in our training procedure;

optimizing for the DSL might not always be ideal in the case of missing views. For

instance, MNIST digit completion seems to benefit empirically from the addition of

DSL. But visually, the digits often look garbled if the trade-off coefficient skews too

much towards DSL, even though the down-stream accuracy increases on the bench-

mark classifier. The training procedure essentially exploits the benchmark classifier’s

limitations instead of producing digits which may look appealing to human observers.



Part III

Improving Inter-view Relationships
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Chapter 5

View Selection and Scalable Active

Search

5.1 Introduction

In the previous chapters, we take the multi-view data as a fixed entity. I.e., the data

itself is immutable, we can just study, understand and exploit the structures we find.

In this chapter, we look at IVRs from another perspective. Given the building blocks

we have put together so far, can we improve the IVRs directly? What control do we

actually have over the data?

The most obvious option is where we are the architect of the system itself. We

can build the robot and its assortment of sensors, or design the probes we poke our

poor patients with. The system is constructed to our specifications, so we can have it

manifest the specific relationships and qualities that we care about. But sometimes,

all we have is the data we get, collected months ago, along with all its, quirks, bugs

and mistakes. Short of system design, we still have some degree of control over IVRs.

For one, we can simply select relevant views from all those available, e.g., choosing

which probes or sensor readings to consider. Another is to reorient the context within

which we view the data, e.g., different featurizations of the same image can be relevant

for different problems.

For both those formulations, it would be beneficial to quantify the relationships

themselves. Here, we introduce the concept of duality between views and data points,

i.e., reinterpreting views as data points, and vice versa. This reinterpration allows

us to apply more traditional single-view machine learning techniques on multi-view

data. We can characterize IVR as function over input views (seen as data-points),

giving a quantifiable metric we can use or optimize over.

In our work, we will consider the problem of view-selection using this duality.

Active Search is an excellent candidate for this, which searches over a graph for views
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while efficiently querying an oracle on the utility of each view selected. In this chapter,

we describe Active Search and propose a scalable alternative to it, which uses linear

pairwise similarity functions between views.

5.2 View Duality

Here, we provide a possible formalization of the notion of view-duality.First, we will

distinguish between the views themselves and the samples from the views. Let us

revisit our notation as described in Chapter 1; we will use Xi to denote the view i

itself, and x
j
i to denote the j

th
sample from view i. The multi-view dataset contains

N points, with corresponding samples in each view. We assume that no samples are

missing in any view. This does not significantly affect most of our discussion, since

we mainly look at statistics over the samples.

5.2.1 Views as data-points

We can consider modeling views through statistics as calculated over the samples of

the views. Writing these as functions over the samples, we would have the following

form for view i:

f(Xi) = φ({x1i ,⋯, x
N
i }) (5.1)

for some feature function φ over sets. We can also model the interactions between

views similarly through such sample statistics. Considering the pairwise case, for

view i and view j, we can model their interaction as:

g(Xi, Xj) = K (ψ({x1i ,⋯, x
N
i }), ψ({x1j ,⋯, x

N
j })) (5.2)

where ψ is some feature function over sets, and K is a pairwise function such as a

kernel function or some other similarity metric. This formulation allows us to models

views and their relationships through statistics of their samples. In general, we can

look at approaches for learning over sets and distributions as candidate models.

Modeling over Sets and Distributions

Learning over distributions has received a lot of attention in recent years. Sutherland

et al. [Sutherland et al., 2016] discuss approximate kernel embeddings which can be

computed in linear-time; this is applicable to Scalable Active Search as mentioned

before. Maundet et al. [Muandet et al., 2016] review various approaches for producing

kernel mean embeddings. For modeling sets, Zaheer et al. [Zaheer et al., 2017] discuss
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necessary and sufficient conditions required for functions over sets and propose deep

models which satisfy these conditions

Learnable Relationships

Given tools to model sets, and their interactions, we have what we need to model

learnable IVRs. We can apply kernel learning as a metric learning problem [Kulis

et al., 2012], or look at multi-kernel learning [Gönen and Alpaydın, 2011], [Sonnen-

burg et al., 2006] techniques to model relevant relationships between views. These

approaches also allow natural integration of prior knowledge, for example, in the form

of triplet constraints. We can also use the Deep Sets framework [Zaheer et al., 2017]

to have trainable set-functions which can optimized given the context of the problem.

Another paradigm to analyze and model the relationship between views is through

causal discovery and causality-based modeling. Glymour et al. [Glymour et al., 2019]

review various methods for causal discovery and causality-based modeling based on

graphical models. Huang et al. [Huang et al., 2019] even propose an approach to

causal discovery over non-stationary data distrbutions, which is often the case with

dynamical systems.

5.2.2 Data-points as views

Here, we will briefly look at the other side to this duality, namely, interpreting data

points as views. The idea here is to look at the extreme case where any given view only

ever produces a single data point. In this sense, every data point can be considered a

view which only produces one sample. And the ground-truth correspondence between

these views is the data distribution itself; i.e. each point is a view into the data

distribution. This interpretation provides other avenues to visualize and model multi-

view data. For example, we can consider the problem of coreset construction which

in essence is a summarization of a large data-set using relatively few data points as

representative examples.

In this thesis, we mainly focus on the other direction of the duality; i.e. the

interpretation of views as data points.

5.3 View Selection

Now, we shift our attention specifically to View Selection as a means to improve IVR.

When we might not always be afforded as much control over the system producing

the data, we can always choose which views we consider. This would be useful in

applications with a large number of views, where we would want to select only a

small subset of views which are relevant to us. These views could be selected to
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optimize for coverage over the underlying data space, or redundancy across views for

reducing noise and dealing with missing view-data.

An example would be social media networks, like Twitter, which can be considered

a large multi-view system. As described before, if we consider every user of Twitter

as a view, we can take their tweets as samples from the view. Locating influential

nodes in social networks and understanding the spread of information are well studied

problems [Guille et al., 2013]. But these problems usually consider the relationship

structure between as induced directly by the social network, while we want to leverage

the data itself as produced by the users to construct this structure.

Again, we can take real-world events as the true underlying data points. Twitter

already provides an easy way to associate tweets to real-world events, namely through

hashtags. Given a set of hashtags connected to an event, we can take tweets using

those hashtags as corresponding samples from different user-views. With this struc-

ture in mind, we can consider view selection as a means to tackle different problems.

For one, we can select a subset users to study and contrast IVR with other character-

istics (e.g., geographical, occupational, etc.) they may have. We can also aggregate

users who share sentiments on different events into a bigger view, possibly to deal

with noise or to augment the data from any one user.

As we mentioned before, an explicit quantification of IVRs would be very beneficial

for view selection. If we can parameterize IVR, we can build models which use this

parameterization. Of course, this is contingent on us being able to give an explicit

mathematical definition of an IVR. Using the concept of view-duality, an IVR could

be defined as a function over input views (seen as data-points) producing a numerical

quantification of the relationship. We can then use this quantification as a basis of

our IVR improvement methods; e.g., as a metric for view selection, or a parametric

formulation to then optimize.

The simplest way we can quantify an IVR is by looking at pairwise functions.

These may be similarity functions, directed/undirected network connectivity, etc.

and necessarily look at local relationships in the data.

Defining a pairwise function over a set of data points induces a graph over them,

with the adjacency matrix represented by the values of the function. Such a formu-

lation is conducive for view-selection, e.g., the set-cover problem selecting a small

number of views while maximizing the information we get, de-noising a given view

based on related/similar views, etc. Graph-based search approaches are good can-

didates for such a view-selection strategy. In case of social networks, we might not

want to use the social network itself for our graph structure, but rather uncover such

a structure in a data-driven fashion.
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5.4 Scalable Active Search for View Selection

Here, we consider Active Search [Wang et al., 2013] as a candidate algorithm for view-

selection. Active Search comes under the Active Learning framework; the algorithm

interactively recovers relevant samples, given a small initial set of target samples.

Background: Active Search on Graphs [ASG]

We briefly describe the algorithm introduced by Wang et al. [Wang et al., 2013]. They

interpret the data as a graph where the edge-weights between points is given by the

similarity K. Their method then uses a harmonic function f to estimate the label of

data points, inspired by the work done by Zhu et al. [Zhu et al., 2003]. This is done

by minimizing the energy:

E(f) = ∑
i∈L

(yi − fi)2Dii + λ(w0∑
i∈U

(fi − π)2Dii +∑
i,j

(fi − fj)2Aij) (5.3)

where Aij = K(xi, xj), Dii = ∑j K(xi, xj), and the regularizing constants λ and

w0 depend on transition probabilities into pseudo-nodes (see [Wang et al., 2013] for

details). Explicitly, if η and ν are transition probabilities into labeled and unlabeled

pseudo-nodes respectively, then λ = 1−η
η

and w0 = ν. The minimizer is:

f
∗
= (I −BD−1

A)−1(I −B)y′, (5.4)

B = [
λ

1+λ
IL 0

0 1

1+w0
IU

] , y
′
= [

yL

π
]

For simplicity of notation, f
∗

will simply be denoted by f moving forward.

To pick points for label queries, ASG uses a heuristic called the Impact Factor

which looks at the change of f values if a given unlabeled point was labeled as positive.

IMi = fi ∑
j∈{U\i}

(f+j − fj)

The final selection criterion is arg maxi fi+αIMi. With this, ASG iteratively queries

labels and updates f and IM . ASG has an O(n3) time initialization and O(n2) time

per-iteration.

5.4.1 ASG for View Selection

In this section, we propose a simple experiment to evaluate the utility of Active

Search for view selection over a large number of views. We formulate the experiment
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as follows: we have an underlying classification problem, which different views have

different amounts of information about. For example, identifying truth/falsehood in

Twitter posts of a given user, would potentially be easier for someone who follows

the account, as opposed to someone who doesn’t.

Figure 5.1: Active Search for View Selection: Comparing ASG vs. random choice on

toy data

In our case, we assume there is a hidden view which provides the true features

relevant for the classification task. The existing views have access to some noisy,

limited version of these features, based on the similarity function. We want to select

additional views to help improve classification performance, but we have a budget on

how many views we can consider.

We compare the utility of ASG vs. random choice on view selection for classifi-

cation. The oracle we use is based on the validation-set performance of a classifier

trained on all the views we have choosen so far. Figure 5.1 demonstrates this utility;

systematic view-selection using ASG allows us to get better classification performance

with any given budget of views.

The immediate concern is that social networks are usually prohibitively large to

create our own inter-user relationship structure. Most graph-based methods succumb

to large amounts of data, given that they usually have a quadratic memory and time

dependency on number of points N . ASG has an additional cubic dependency on

N for initialization. In the next section, we look at an extension of AS which scales

several orders of magnitude, and can be used on very large datasets.
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5.4.2 Scalable Active Search

Here, we describe Linearized Active Search (LAS), a highly scalable extension of

ASG. Similar to ASG, we look at the graph over data-points which is induced by a

similarity metric K. For our method to scale, we require that this metric is linear

in the input. In other words, we require feature vectors for our points, and the dot-

product as the similarity function. This requirement is often not too restrictive; in

fact, some popular kernels can be approximated using a linear embedding into some

feature space. For example, the RBF kernel can be approximated by Random Fourier

Features [Rahimi and Recht, 2007]. For simplicity, let xi itself represent the feature

vector. The similarity between two points is then K(xi, xj) = xTi xj.
Note: As mentioned, ASG requires purely graphical data as input, i.e. the graph

adjacency matrix. LAS works with a different class of data, which lives in some

multi-dimensional feature space. A graph is induced over the data by the similarity

function. If the input to ASG and LAS is the same, the results will be identical. By

“the same”, we mean the adjacency matrix for ASG is the same as the one of the

induced graph for LAS. In this case, f, IM and the point queried will be identical at

every iteration.

Algorithm 1 LAS: Linearized Active Search

Input: X,L0, w0, λ, π, α, T

U ← {x1,⋯, xn}\L0

Initialize K
−1
, f , IM

for i = 1 → T do

Query: xi ← argmaxU(f + αIM)
Update K

−1
, f , IM with xi, yi

Remove xi from U
end for

The pseudo-code is given in Algorithm 1. We now discuss how a linear similarity

function helps us update f efficiently.

Initialization The adjacency matrix is A = X
T
X where X = [x1⋯xn], with n

points and r features. Then, D = diag(XT
X1). This gives us:

f = (I −RXT
X)−1q

R = BD
−1
, q = (I −B)y′

Using the matrix inversion lemma, we get:

f = q +RX
T
K
−1
Xq (5.5)



68 CHAPTER 5. VIEW SELECTION AND SCALABLE ACTIVE SEARCH

K = I −XRX
T

(5.6)

This converts an O(n3) time matrix inverse in ASG into the O(r3) time inverse of

K. For large datasets, we can expect r ≪ n. Below, we show that we only need to

invert K once; its inverse can be efficiently updated every iteration.

The initialization runs in O(nr2 + r
3) time for computing K

−1
and O(nr2) for

computing f . Next, we describe our efficient updates to K and f given a new label.

Updates to f on receiving a new label We have K
−1
= (I −XRXT )−1 at the

previous iteration. Only one element in R changes each iteration. Take superscript
+

to mean the updated value of a variable. We have:

R
+
= R − γeie

T
i

where γ = − ( λ

1+λ
− 1

1+w0
)D−1

ii and ei is the i
th

standard basis vector. Using the

matrix inversion lemma:

(K+)−1 = K−1
−
γ(K−1

xi)(K−1
xi)T

1 + γxTi K
−1xi

(5.7)

Only one element in q changes: q
+
i = yi

1

1 + λ
. Thus, the update to f can be calculated

as:

f
+
= q

+
+R

+
X
T (K+)−1Xq+

This takes O(r2 + rn) time per-iteration as it just involves cascading matrix-vector

multiplications.

Impact Factor LAS also includes appropriate modifications for the initialization

and updates of the Impact Factor which adhere to the improved running time. We do

not describe these here as they are much more involved than those above, while not

being fundamentally complicated. We also slightly changed the Impact Factor from

ASG: we scaled IM so that it has the same mean as the f vector. This allows us to

tune α without worrying about the magnitude of values in IM , which varies based

on the dataset.

Note: We have omitted some derivations and proofs for the sake of presentation.

If the reader is interested, we direct them to [Venkatesan et al., 2017] for further

exposition.

Weighted Neighbor Active Search [WNAS]

Here, we briefly describe a simple and intuitive alternate approach for query selection

which also scales well with large amounts of data. This approach is similar to the
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Nadaraya-Watson kernel regressor:

fi =
∑j∈L yi ⋅K(xi, xj)
∑j∈L ∣K(xi, xj)∣

The updates for f for this approach are simple. We keep track of the numerator

and denominator individually for each unlabeled point. Each time we get a new

labeled point xi, we can compute its similarity to all other unlabeled points efficiently

as the following vector:

K(XU , xi) = XT
U xi

We can then update the numerator and denominator of all unlabeled points directly

from this vector. The numerators would be updated by adding yiK(XU , xi) and the

denominators would be updated by adding ∣K(XU , xi)∣. These computations require

O(nr) time for initialization and iteration.

5.4.3 Experiments

We performed experiments on the following datasets:

• The Covertype dataset contains multi-class data for different forest cover types.

There are around 581,000 points with 54-dimensional features. We take the

class with the lowest prevalence of 0.47% as positive. The data is unit nor-

malized across features and a bias feature is appended to give 55 in total.

Then, we project these onto a 550-dimensional space using Random Fourier

Features [Rahimi and Recht, 2007] to approximate an RBF Kernel.

• The Adult dataset consists of census data with the task of predicting whether

a person makes over $50k a year or not. It contains 14 features which are

categorical or continuous. The continuous features are made categorical by

discretization. Each feature is converted into a one-hot representation with m

binary features for m categories. The features are then unit normalized. The

positives are those making more than $50k a year. We modified the dataset size

to make the target prevalence 5%. The final dataset has a 39,000 points.

• For the MNIST dataset, we combine the training, validation and testing sets

into one. The 28x28 pixel images give us 784 features which are then unit

normalized. We take the positive class to be the digit 1, and modified its

prevalence to be 1%. The final dataset has around 63,500 points.

We compare LAS and WNAS to Anchor Graph Regularization with Local

Anchor Embedding [AGR] as described in [Liu et al., 2010]
1
. Their approach creates

1
This was re-implemented in Python for our experiments.



70 CHAPTER 5. VIEW SELECTION AND SCALABLE ACTIVE SEARCH

a proxy graph called the Anchor Graph which approximates the larger dataset; the

labels given to points are then a weighted combination of the labels of the anchor

points. Since this is a semi-supervised classification approach, we retrain it every

iteration with all the data and known labels. We then use the confidence values for

each unlabeled point to be positive as the f value. This algorithm requires anchors

to be computed beforehand. For this, we generated k-means over the transformed

data points, with k = 500 for each dataset.

Our main experiment measured recall (number of positives found) over a fixed

number of iterations for each dataset. For each dataset, 10 runs were performed

starting with one randomly chosen positive as initialization. For LAS, we took α (the

coefficient for the Impact Factor) to be the best from empirical evaluations. This was

10
−6

for CoverType and Adult, and 0 for MNIST. π was taken as the true positives

prevalence.

We also carried out smaller experiments over each dataset where we studied the

predictive performance of LAS vs. WNAS immediately after initialization. Here,

we randomly sampled 100 pairs of one positive and one negative point to initialize.

Then, we reported the number of positives in the top 100 unlabeled points according

to their f -values. These 100 pairs did not include “bad” initializations, where neither

approach found any positives.

Note: We did not compare our approach vs. purely graph based methods as in

the [Wang et al., 2013] Since our results are identical to ASG given the “same” data

as described before, we only considered data with feature vectors.

CoverType MNIST

250 500 200 400

LAS 198.7 ± 32.0 377.8 ± 55.7 199.5 ± 1.0 386.4 ± 4.9

WNAS 188.8 ± 21.5 375.7 ± 37.9 193.7 ± 3.0 379.8 ± 7.2

AGR 27.2 ± 11.2 43.5 ± 11.8 192.8 ± 3.1 380.1 ± 4.0

Adult

100 200

LAS 53.7 ± 11.7 116.7 ± 13.3

WNAS 46.1 ± 16.3 99.4 ± 26.4

AGR 23.1 ± 18.5 57.1 ± 39.2

Table 5.1: This table shows mean recall ± standard deviation at the middle and last

iteration for each algorithm and dataset.
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Figure 5.2: These plots show recall vs. iteration averaged across 10 runs for LAS,

WNAS and AGR, along with ideal and random recall. The left image is for Cover-

Type, the middle image is for MNIST and the right image is for Adult.

Dataset (pos%) LAS WNAS

Covertype (0.47%) 4.19 1.66

MNIST (1.00%) 94.25 60.68

Adult (5.00%) 27.25 17.29

Table 5.2: This table shows the average positives in the top 100 unlabeled points

from the f -values of LAS and WNAS.

Results

Figure 5.2 shows plots of the recall per iteration of LAS, WNAS and AGR for the

different datasets. Table 5.1 shows mean recall and standard deviation of these exper-

iments in the mid and final iteration. LAS and WNAS both have good performance

in all three experiments. The CoverType dataset has high variance in estimates,

likely because the data has many scattered positives which are not very informative

during initialization. The algorithms would then take longer to discover the remain-
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ing positives. The MNIST data-set showed particularly good performance across the

different approaches; all three approaches have near ideal recall. This is likely because

the targets are tightly clustered together in the feature-space. The performance of

AGR in the CoverType, though much better than random choice, is poorer than the

other approaches. This is because AGR incurs significant overhead in the initializa-

tion of the algorithm. Computing k-means, followed by the weights and the reduced

Laplacian of the Anchor Graph takes a few hours for CoverType. Furthermore, any

change in the feature function used between the data points requires recomputation

of the Anchor Graph. Due to this, we only used 500 Anchors even though it is a larger

data-set. This poorer approximation of the data likely led to worse performance.

Table 5.2 shows the comparison between LAS and WNAS given a single positive

and negative point for initialization.

Note: We also conducted experiments on much larger datasets from the UCI

Repository: the HIGGS dataset (5.5 million points) and the SUSY dataset (2.5 million

points). We have not reported these results. These experiments were not any more

informative than those above; they just served as a demonstration of scale.

5.5 Conclusion

In this chapter, we looked at improving IVR through quantifying the interactions of

views directly. We first introduce the notion of view-data duality where we argue that

we can interpret views as data points and vice-verse, which allows us to use different

algorithms in our analysis of multi-view data. Such a formulation is conducive to

applying metric learning and other such methods to form relationships between views.

We then proposed Scalable Active Search as a candidate for view-selection. Given

a similarity metric between featurizations of views, Active Search allows us to search

effectively for relevant and similar views which can corroborate and de-noise a given

initial selection of views. LAS can scale this search by several orders of magnitude

given a linear similarity metric between views, as demonstrated by our experimental

evaluations.



Chapter 6

Conclusion

6.1 In this thesis...

We primarily investigated the following hypothesis to address shortcomings in the

existing multi-view machine learning literature:

Multi-view data does not just provide us with multiple sets of features

through the views, it also provides structural information through the in-

teractions and relationship between them.

Existing work rarely considers IVRs explicitly in their approaches, typically modeling

them implicitly through the application or problem domain. Subsequently, most

approaches are application or domain specific and an exploration of the nuances

within these IVRs is absorbed into the nature of the problem itself.

To this end, we looked at developing new and adapting existing algorithms for task-

agnostic and task-adaptive learning over multi-view data. We paid special attention

to Multi-view Representation Learning as an intermediate learning step, and to

the use of the learned representations to tackle down-stream applications, illustrating

the approach using missing view reconstruction and classification tasks. Through

our work, we show the utility of knowing where to look and what to look for while

modeling IVRs.

Here, we will revisit the overall contributions of this thesis and look at how they

come together. Within each, we will take a revisit to the relevant chapters, and

discuss the main takeaways from them.

Contribution 1: Developing new task-agnostic representation learning methods to

model multi-view data while respecting IVR.

[Chapter 2]
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• We first introduced a direct approach, Multi-view One-vs-Rest Embedding

Learning (MOREL), to verify the validity of our principal hypothesis. Here,

we departed from the typical CCA-based framework where a single shared em-

bedding space is learned for all sets of features. We instead optimized for each

view individually vs. the rest, where we used group-sparsity to uncover local

relationships in the data.

We evaluated MOREL through synthetic experiments where we found that we

were able to uncover relationships between views which were otherwise obfus-

cated when applying the more traditional CCA variants. The purpose of this

demonstration was to show the utility of explicitly considering IVRs in our

models.

• Next, we proposed the Robust Multi-view Auto-Encoder (RMAE), as a more

widely applicable MVRL approach. For the RMAE, we directly introduced the

notion of robustness into our training procedure by applying dropout to the

views, i.e. randomly dropping views during training. In our experiments, we

evaluated the performance of RMAE vs. other multi-view auto-encoder alter-

natives in how they modeled relationships between views: (i) Intersection MAE

which had a single bottle-neck representation for all views (i.e. targeting purely

global relationships) and (ii) Concatenation MAE which ignored all view-based

structure and simply concatenated the views before the encoding. All three of

the approaches were trained with view-dropout.

Our synthetic experiments showed RMAE’s clear superiority in reconstruct-

ing missing views from limited information. In our real-world experiments in

text-based and image-based datasets with associated downstream classification

tasks, we noticed that there was not a single clear winner. But in every exper-

iment, RMAE was either the best or second best at generalizing with limited

information which was not true for the others. We attribute the individual

differences in performance to the contexts of the downstream problems. Often,

the intersection of bottleneck representations is what one would want, especially

in cases where any given view can perform reasonably on the task on its own.

Regardless, RMAE is able to generalize better in the task-agnostic sense. Even

when uninformed about the context, it is able to produce a representation that

is robust and leverage IVRs.

[Chapter 3]

• Then, we looked at a generative modeling approach for multi-view data using on

flow-based models. Specifically, we developed a multi-view extension of the AC

Flow [Li et al., 2019], MACF. Building generative models of multi-view data,
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allows us to sample and estimate likelihoods of data, which is not possible with

RMAE. MACF follows the same framework as before, where we have a shared

encoder and individual view encoders, as well as view-dropout in the training

procedure for robustness. Given the nature of our data, we are able to exploit

view-based structures to learn conditional MACF models for each view. When

we pre-train or fix view encoders, we can gracefully decompose the problem into

a set of independent and parallelizable subproblems for each view.

Our primary evaluations involved digit sampling and digit classification of the

benchmark handwritten character recognition (MNIST) data, where we took

the four quadrants of every image as four views. We compared our classifica-

tion performance against two baselines – ground truth and zero imputation. We

show significant improvement over zero imputation for classification, especially

when we have very few views available. Further, as more views become avail-

able, the performance of our method approaches the performance of ground-

truth classification. In our digit sampling evaluations with missing views, our

method very often produces reasonable digit completions. And often, in cases

where the sampled digit differs from the ground-truth, the completions become

graceful errors, i.e. they resolve into a different digit which is reasonable given

the information available to the algorithm.

The main drawback of the MACF approach, especially in our endeavour to

remain task-agnostic, is the slow run-time and limited scalability with large

datasets. For this reason, most of our experiments were run on scaled down

(and stratified) versions of the MNIST data. Parallelization into separable

subproblems (in the case of fixed view-encoders) does alleviate this issue to

some extent, but nonetheless, it remains a problem to be addressed in future

work .

Contribution 2: Applying and adapting MVRL methods to real world problems

and application, i.e. task-adaptive representation learning

[Chapter 4]

• We used context from the down-stream problem to inform the training of our

MACF. Namely, we included the down-stream loss function into our training

procedure to guide the representation learning toward task-specific utility. This

introduced trade-offs – additional model parameters and therefore increased

complexity of the overall learning task, as well as the overhead of the problem

not being separable into views anymore – adding to the run-time of the method

and increasing its propensity for overfitting. In turn, the augmented loss func-

tion can provide relevant information for the problem, and it can also introduce
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consistency between the views by explicitly relating the likelihood-based losses

for the individual views, while contextualizing that to the downstream task

needs. To investigate this, we conducted experiments on image and temporal

datasets, where we varied the trade-off coefficient γ of the DSL term in the

overall MVRL objective.

From our experiments on digit sampling using the MNIST database, we found

that the shift to task-adaptive representation learning was not a straightforward

win. While the performance on the down-stream evaluation criterion, i.e., the

benchmark MNIST classifier, improved with increasing γ, the visual appearance

of the sampled digits themselves did not. They proceeded to become more

garbled as the influence from the DSL component became larger. We believe

this to be the case because the DSL objective is not necessarily aligned with the

goal of producing realistic samples. When we have limited information like only

a quadrant of the entire digit, the range of possible digit completions is much

larger. But the inclusion of the DSL loss pigeonholes the training procedure

into one digit, since we are associating a label with every training instance.

In our experiments on the Polysomnographic MITBIH data-set, our evaluations

provide more intuitive results. In this case, we had no benchmark classifier for

the sleep-classification data, so we pre-trained a fully connected deep-neural

network and froze its parameters, and used it as is in our MVRL training

procedure. We notice that the inclusion of the DSL loss improves down-stream

classification of sleep stages with the expected trend: classification accuracy

increases as we increase γ. This holds true for all the classification models

we used: The original frozen DSL model itself, a separately trained Multi-

layer Perceptron (MLP) and a separately trained Random Forest (RF). In these

experiments, we don’t have additional evaluation criteria as before, i.e. we don’t

have the equivalent of an assessment of realistic samples produced by our model.

Since we only evaluate through classification performance using different down-

stream models, the benefit of using DSL is more straightforward to observe.

Another conclusion we can draw, which is shared across all the chapters so far,

is in relation to data-agnosticity. This involves how we tune our encoders and

our framework depending on the type or modality of the data involved (such

as CNNs for images or RNNs for sequences). Now, we are rarely truly data-

agnostic, since we often tune our view and shared encoders based on the data

we consider. That said, our models do have more general applicability, and

the flexibility of being easier to apply to various multi-view problems relatively

easily, regardless of domain.

But we do notice the following: In our attempt to build more generalizable
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models, the flexibility gained from wider applicability comes at the cost of per-

formance on specific tasks and applications. This is true in terms of run-time

(e.g., we do not make any assumptions on how or when views go missing), and

performance (e.g., we often do not use off-the-shelf architectures built specifi-

cally for our application domains).

Contribution 3: Improving IVRs directly through view-selection using Active Search,

and proposing a scalable extension of it for large amounts of data.

[Chapter 5]

• We introduced the idea of view-duality, i.e. a reinterpretation of views as data

points. We showed through a straightforward experiment that this reinter-

pretation allows us to consider traditionally single-view models for multi-view

learning and used this as a bridge to improve IVRs. Namely, we considered

view-selection, where we directly choose views which manifest favorable rela-

tionships between them. We looked at how we can quantify and parameterize

such relationships, and how we can build models which use such a quantification.

Given this, we can use Active Search as a candidate for view-selection. We

demonstrate through a simple experiment where pairwise similarity function,

that Active Search is useful for view-selection to denoise and improve down-

stream classification performance.

We then unpacked Active Search on Graphs, and looked at how the switch to

linearized similarity functions and the associated algorithmic changes, gives us

a significant speed-boost to performance. The scalability of our new approach,

Linearized Active Search, shows an improvement of about 2-3 orders of magni-

tude as compared to the original method. Further, the need for linear similarity

functions is not as restrictive as it may initially seem; using techniques such as

random Fourier features, we can consider linearized forms of non-linear similar-

ity functions which we can then include in our approach scalably.

6.2 Future Work

As before, we divide these into three categories using the same overarching themes.

6.2.1 Understanding IVR

In our work so far, we have primarily considered one notion of robustness for our

representation learning models, i.e. resilience to missing information. We can ex-

plore other options for this, including de-noising capabilities, resilience to anomalies
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and adversarial attacks. Further, we can look at optimizing for notions other than

robustness; for example, low-bandwidth settings could call for learning an ordering

over utility of views given a specific task.

We can also look at other generative modeling techniques to apply to our MVRL

framework. Variational Auto-Encoders with Arbitrary Conditioning (VAEAC) [Ivanov

et al., 2019] is one such approach which naturally fits into our proposed framework.

Finally, a principled statistical characterization of views and their relationships is

missing in the literature. This would be important to address next as well.

6.2.2 Exploiting IVR

We looked at task-based model adaptation for exploiting our MVRL models. We

can also look at more extensive data-based adaptations; in our work, we have only

discussed the specific case of temporal data, specific to the medical domain. We

can look at better adapting our framework, including view-specific and shared en-

coders/decoders, to specific domains and data types. RNN and CNN based en-

coders/decoders would be useful for temporal and image based data. We can look

at similar considerations for text-based data and other domains; we can also go in

the opposite direction where we look at unstructured annotations and miscellaneous

meta-information of the data which can be treated as additional views. Asynchronous

data is another application which would require special consideration, where we don’t

assume that correspondences between views always exist.

6.2.3 Improving IVR

We looked at the duality between views and data points, and proposed view-selection

as an avenue to use this connection to improve multi-view relationships. We can take

this a step further by building more general parametric models of IVRs themselves;

the similarity metrics we described for SAS is one such option but we can look at other

options which do not need to defined over pairs of views. For example, we can use

general distribution statistics for featurizing views, and look at coordinated/shared

space representations for multi-view data.

Building such a meta-framework, i.e. an intermediate framework for defining and

modeling view-relationships, we can open up different learning methods for improving

IVRs directly. We can also consider online relationship-learning and view-selection

built on top of this meta-framework, which would be especially useful in dynamic

environments where the multi-view datadistribution is non-static (e.g., self-driving

cars in various terrains).
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